Package provides Python-style list comprehensions for R.
List comprehension expressions use usual loops (for
,
while
and repeat
) and usual if
as
list producers. Syntax is very similar to Python. The difference is that
returned value should be at the end of the loop body.
There are three main functions:
to_list
converts usual R loops expressions to list
producers. Expression should be started with for
,
while
or repeat
. You can iterate over multiple
lists if you provide several loop variables in backticks. See
examples.to_vec
is the same as to_list
but return
vector. See examples.alter
return the same type as its argument but with
modified elements. It is useful for altering existing data.frames or
lists. See examples.Rather unpractical example - squares of even numbers:
Pythagorean triples:
to_list(for (x in 1:20) for (y in x:20) for (z in y:20) if (x^2 + y^2 == z^2) c(x, y, z))
#> [[1]]
#> [1] 3 4 5
#>
#> [[2]]
#> [1] 5 12 13
#>
#> [[3]]
#> [1] 6 8 10
#>
#> [[4]]
#> [1] 8 15 17
#>
#> [[5]]
#> [1] 9 12 15
#>
#> [[6]]
#> [1] 12 16 20
More examples:
colours = c("red", "green", "yellow", "blue")
things = c("house", "car", "tree")
to_vec(for(x in colours) for(y in things) paste(x, y))
#> [1] "red house" "red car" "red tree" "green house" "green car"
#> [6] "green tree" "yellow house" "yellow car" "yellow tree" "blue house"
#> [11] "blue car" "blue tree"
# prime numbers
noprimes = to_vec(for (i in 2:7) for (j in seq(i*2, 99, i)) j)
primes = to_vec(for (x in 2:99) if(!x %in% noprimes) x)
primes
#> [1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
You can iterate over multiple lists if you provide several loop variables in backticks:
to_vec(for(`i, j` in numerate(letters)) if(i %% 2==0) paste(i, j))
#> [1] "2 b" "4 d" "6 f" "8 h" "10 j" "12 l" "14 n" "16 p" "18 r" "20 t"
#> [11] "22 v" "24 x" "26 z"
set.seed(123)
rand_sequence = runif(20)
# gives only locally increasing values
to_vec(for(`i, j` in lag_list(rand_sequence)) if(j>i) j)
#> [1] 0.7883051 0.8830174 0.9404673 0.5281055 0.8924190 0.9568333 0.6775706
#> [8] 0.8998250 0.3279207 0.9545036
alter
examples:
data(iris)
# scale numeric variables
res = alter(for(i in iris) if(is.numeric(i)) scale(i))
str(res)
#> 'data.frame': 150 obs. of 5 variables:
#> $ Sepal.Length: num [1:150, 1] -0.898 -1.139 -1.381 -1.501 -1.018 ...
#> ..- attr(*, "scaled:center")= num 5.84
#> ..- attr(*, "scaled:scale")= num 0.828
#> $ Sepal.Width : num [1:150, 1] 1.0156 -0.1315 0.3273 0.0979 1.245 ...
#> ..- attr(*, "scaled:center")= num 3.06
#> ..- attr(*, "scaled:scale")= num 0.436
#> $ Petal.Length: num [1:150, 1] -1.34 -1.34 -1.39 -1.28 -1.34 ...
#> ..- attr(*, "scaled:center")= num 3.76
#> ..- attr(*, "scaled:scale")= num 1.77
#> $ Petal.Width : num [1:150, 1] -1.31 -1.31 -1.31 -1.31 -1.31 ...
#> ..- attr(*, "scaled:center")= num 1.2
#> ..- attr(*, "scaled:scale")= num 0.762
#> $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# convert factors to characters
res = alter(for(i in iris) if(is.factor(i)) as.character(i))
str(res)
#> 'data.frame': 150 obs. of 5 variables:
#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#> $ Species : chr "setosa" "setosa" "setosa" "setosa" ...
# drop factors
res = alter(for(i in iris) if(is.factor(i)) exclude())
str(res)
#> 'data.frame': 150 obs. of 4 variables:
#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
# 'data' argument example
# specify which columns to map with a numeric vector of positions:
res = alter(
for(`i, value` in numerate(mtcars)) if(i %in% c(1, 4, 5)) as.character(value),
data = mtcars
)
str(res)
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : chr "21" "21" "22.8" "21.4" ...
#> $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : chr "110" "110" "93" "110" ...
#> $ drat: chr "3.9" "3.9" "3.85" "3.08" ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
#> $ am : num 1 1 1 0 0 0 0 0 0 0 ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
# or with a vector of names:
res = alter(
for(`name, value` in mark(mtcars)) if(name %in% c("cyl", "am")) as.character(value),
data = mtcars
)
str(res)
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl : chr "6" "6" "4" "6" ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
#> $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
#> $ am : chr "1" "1" "1" "0" ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...